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Abstract

• This paper introduces a specially designed toolbox aimed at leveraging Natural 

Language Processing (NLP) to unlock insights for the National Bank of Romania 

(NBR), enhancing economists' capacity to process text data such as financial news 

and press releases, exploring areas of Financial Stability and Central Bank 

Communication.

•  We propose implementing scalable Natural Language Processing methods within 

the National Bank of Romania’s analysis toolkit, focusing on lexicon-based 

sentiment analysis of daily news and monetary policy decisions. This study seeks 

to align the institution with the best practices of other central banks and 

highlights the untapped potential of textual data as a valuable resource in central 

banking.
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Introduction

• The paper is structured in two chapters: the first one addressed monetary policy 

statements in English from the National Bank of Romania, the European Central 

Bank, the United States’s Federal Reserves and 25 other emerging market 

countries, with the scope of building a list of positive and negative words specific 

for central bank text, the starting point of the Romanian Financial Stability 

Dictionary. 

• The second chapter focus on the Romanian news archive database, and we 

finalize the Financial Stability Dictionary that contains specialized positive and 

negative words. We augment the method with GenAI scores to measure text-

based sentiments in financial texts. 
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• The first part focuses on English monetary policy statements starting from the 

moment NBR adopted inflation targeting. We extended the dataset by including  

ECB, FED, and 25 other emerging market countries. 

• We fine-tuned a Transformer model, FinBERT, on the binary sentiment labels we 

created for the monetary policy statement based on movements in the monetary 

policy interest rate of each country (positive sentiment if the interest rate is 

lowered, negative sentiment if the interest rate is raised).

• After trying unspecialized lexicons, we demonstrated that using specialized 

Financial Stability Dictionary is crucial for constructing a sentiment index for 

monetary policy, and we measure the polarity of words using GenAI.
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Chapter 1. The English Monetary 

Policy Statements Database
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Confusion Matrix of 
FinBERT on test sample 
from the extended 
English database

precision recall F1-score support

positive 86.52% 89.19% 87.82% 259

negative 92.53% 90.60% 91.56% 383

accuracy 90.03% 642

macro accuracy 89.53% 89.89% 89.69% 642

Weighted average 90.11% 90.03% 90.05% 642

Classification 
report on test 
sample (10 
epochs)
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• The version of the sentiment index with scores outperforms the simple sentiment 

index by 2% (78% versus 76%), and the final index that we obtained by mixing the two 

methods matches 92.5% of the labels. This performance is considered excellent, given 

that the neutral decisions were built using the last decision rule (negative sentiment 

persists if last decision was to raise the interest rate, positive sentiment persists if the 

last decision was to lower interest rate) and not manually evaluated by a human. 

• To assess the performance of our NLP analysis, we examined the correlation between 

the sentiment index of monetary policy decisions and the most relevant economic 

variable: the inflation rate, since controlling inflation is the primary goal of monetary 

policy. We found an expected negative correlation between our computed sentiment 

and the all-items HICP (Harmonized Index of Consumer Prices) of over -40%, while the 

correlation between the monetary policy interest rate and HICP was around -60%.



Sentiment Index of Monetary Policy compared to Binary Labels



Chapter 2. The Romanian Financial 

News Articles Database

• The second part addresses the NBR’s archive of daily financial news, for which we 

conduct topic modeling using LDA to track key trends in the news, and propose a 

tailor-made, Romanian Financial Stability Dictionary to measure sentiments.

• We computed polarity intensity scores by prompting  as a financial stability expert 

a Gen AI agent. 

• In absence of labels, we assess the performance by comparing our method with 

K-Means++ clustering applied to embeddings obtained with multilingual BERT 

Transformer and reduced with PCA, and by demonstrating correlations with 

macroeconomic and market variables as well as interactions with monetary policy 

decisions.
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Interactive LDA analysis, Example for year 2023
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Heatmap of the Importance of the Main Five Topics Over Time
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Word Cloud analysis, Example for year 2023
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Daily Sentiment of News using Romanian Financial Stability Dictionary

𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 =
𝑃 𝑡 − 𝑁 𝑇

𝑃 𝑡 + 𝑁 𝑡
where P number of positive lemmas and N 
number of negative lemmas
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Daily Sentiment of News using Romanian Financial Stability Dictionary 
augmented with scores

𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝑆𝑐𝑜𝑟𝑒 𝐼𝑛𝑑𝑒𝑥 =
σ𝑖=1

𝑃 𝑡
𝑆𝑝 𝑖 + σ𝑗=1

𝑁 𝑡
𝑆𝑛 𝑗

σ
𝑖=1
𝑃 𝑡

𝑆𝑝 𝑖 + σ
𝑗=1
𝑁 𝑡

𝑆𝑛 𝑗

where Sp scores of positive 
lemmas and Sn scores of 
negative lemmas



• To assess the performance of our daily sentiment indicator, we 

developed an unsupervised K-Means++ analysis according to Kanungo 

(2002) on embeddings using the BERT multilingual model by Devlin (2018), 

after reducing their size using PCA. The results show a 93% overlap between 

the clusters and the binary labels from the simple index, while a slightly 

higher 96% overlap for the index using scores. 

• We compared the daily sentiment of financial news with the moments 

of monetary policy decisions and showed that there is strong evidence that 

the press respond to monetary policy decisions and that the communication 

of the central bank is efficient in influencing the markets. 

• We also found a clear correlation with macroeconomic variables: BET, 

the stock market index, yields of short-term bonds, as well as interbank 

interest rates ROBOR3M.
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Daily Sentiment of Financial News and Monetary Policy Decisions
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Daily Sentiment of News and Stock Market Index
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Quarterly Sentiment of News and Percentage Change in 
Stock Market Index
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Daily Sentiment of News, Interbank Interest 
rates and Sovereign Yield Rates



Conclusions

• This paper proposes stepping aside from classical numerical, tabular data and 

investing more time and effort in the use of nontraditional data, not just time 

series, thus implementing natural language processing methods at a large scale for 

some types of text that exist in a central bank. The primary goal is to provide the 

NBR with a guideline for pre-processing Romanian text, building NLP tools, and 

benchmarking sentiment analysis. 

• We can only hope that by following this NLP Toolbox for the National Bank of 

Romania, the list of potential use cases for NLP will continue to be extended at the 

NBR and that economists will commit to a long-term adoption of text data in their 

research, as there are many other text sources available.
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