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Abstract

* This paper introduces a specially designed toolbox aimed at leveraging Natural
Language Processing (NLP) to unlock insights for the National Bank of Romania
(NBR), enhancing economists' capacity to process text data such as financial news
and press releases, exploring areas of Financial Stability and Central Bank

Communication.

*  We propose implementing scalable Natural Language Processing methods within
the National Bank of Romania’s analysis toolkit, focusing on lexicon-based
sentiment analysis of daily news and monetary policy decisions. This study seeks
to align the institution with the best practices of other central banks and
highlights the untapped potential of textual data as a valuable resource in central

banking.
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Introduction

 The paper is structured in two chapters: the first one addressed monetary policy
statements in English from the National Bank of Romania, the European Central
Bank, the United States’s Federal Reserves and 25 other emerging market
countries, with the scope of building a list of positive and negative words specific
for central bank text, the starting point of the Romanian Financial Stability

Dictionary.

* The second chapter focus on the Romanian news archive database, and we
finalize the Financial Stability Dictionary that contains specialized positive and
negative words. We augment the method with GenAl scores to measure text-

based sentiments in financial texts.
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Chapter 1. The English Monetary

Policy Statements Database

 The first part focuses on English monetary policy statements starting from the
moment NBR adopted inflation targeting. We extended the dataset by including

ECB, FED, and 25 other emerging market countries.

* We fine-tuned a Transformer model, FinBERT, on the binary sentiment labels we
created for the monetary policy statement based on movements in the monetary
policy interest rate of each country (positive sentiment if the interest rate is

lowered, negative sentiment if the interest rate is raised).

e After trying unspecialized lexicons, we demonstrated that using specialized
Financial Stability Dictionary is crucial for constructing a sentiment index for

monetary policy, and we measure the polarity of words using GenAl.
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The version of the sentiment index with scores outperforms the simple sentiment
index by 2% (78% versus 76%), and the final index that we obtained by mixing the two
methods matches 92.5% of the labels. This performance is considered excellent, given
that the neutral decisions were built using the last decision rule (negative sentiment
persists if last decision was to raise the interest rate, positive sentiment persists if the

last decision was to lower interest rate) and not manually evaluated by a human.

To assess the performance of our NLP analysis, we examined the correlation between
the sentiment index of monetary policy decisions and the most relevant economic
variable: the inflation rate, since controlling inflation is the primary goal of monetary
policy. We found an expected negative correlation between our computed sentiment
and the all-items HICP (Harmonized Index of Consumer Prices) of over -40%, while the

correlation between the monetary policy interest rate and HICP was around -60%.
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Sentiment Score
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Chapter 2. The Romanian Financial

News Articles Database

 The second part addresses the NBR’s archive of daily financial news, for which we
conduct topic modeling using LDA to track key trends in the news, and propose a

tailor-made, Romanian Financial Stability Dictionary to measure sentiments.

*  We computed polarity intensity scores by prompting as a financial stability expert

a Gen Al agent.

* In absence of labels, we assess the performance by comparing our method with
K-Means++ clustering applied to embeddings obtained with multilingual BERT
Transformer and reduced with PCA, and by demonstrating correlations with
macroeconomic and market variables as well as interactions with monetary policy

decisions.
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Interactive LDA analysis, Example for year 2023
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Topic
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Word Cloud analysis, Example for year 2023
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Daily Sentiment of News using Romanian Financial Stability Dictionary
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Daily Sentiment of News using Romanian Financial Stability Dictionary

augmented with scores

N(t)

—— Sentiment with Scores

P(t)

e

0.6

0.2 1

24025 JU3WIU3sS

0.0
-0.2

where Sp scores of positive
lemmas and Sn scores of

negative lemmas

5n(j)
|1Sn ()

1
N(t)
J

NOED»

1
P(t)

.

l

Sentiment Score Index

=1

Sp() + X

l

16

T@{ NATIONAL BANK OF ROMANIA



e To assess the performance of our daily sentiment indicator, we
developed an unsupervised K-Means++ analysis according to Kanungo
(2002) on embeddings using the BERT multilingual model by Devlin (2018),
after reducing their size using PCA. The results show a 93% overlap between
the clusters and the binary labels from the simple index, while a slightly

higher 96% overlap for the index using scores.

* We compared the daily sentiment of financial news with the moments
of monetary policy decisions and showed that there is strong evidence that
the press respond to monetary policy decisions and that the communication

of the central bank is efficient in influencing the markets.

* We also found a clear correlation with macroeconomic variables: BET,
the stock market index, yields of short-term bonds, as well as interbank

interest rates ROBOR3M.
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Daily Sentiment of Financial News and Monetary Policy Decisions
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Daily Sentiment Index

Daily Sentiment of News and Stock Market Index
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Quarterly Sentiment of News and Percentage Change in

Stock Market Index
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Daily News Sentiment Index
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Conclusions

e This paper proposes stepping aside from classical numerical, tabular data and
investing more time and effort in the use of nontraditional data, not just time
series, thus implementing natural language processing methods at a large scale for
some types of text that exist in a central bank. The primary goal is to provide the
NBR with a guideline for pre-processing Romanian text, building NLP tools, and

benchmarking sentiment analysis.

* We can only hope that by following this NLP Toolbox for the National Bank of
Romania, the list of potential use cases for NLP will continue to be extended at the
NBR and that economists will commit to a long-term adoption of text data in their

research, as there are many other text sources available.
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